Characterization of Micropore Structure of Porous Materials Using DFT Models Applied to Ar, N₂ and H₂ Adsorption Data.

> Jacek Jagiello Micromeritics Instrument Coorporation, Norcross GA, USA

> > jacek.jagiello@miromeritics.com

Outline of the presentation

- Objective
- Earlier results
- Experimental
- Assumptions of model calculations
- Method of the PSD calculation
- Calculation of carbon PSDs using multiple adsorbates: Examples
- Fundamental and practical advantages of using more than one adsorbate for PSD analysis
- DFT based prediction of high-pressure H_2 adsorption at ambient temperature from H_2 measurements at 77 K
- PSD analysis for zeolites
 - Effect of pore sizes and materials chemistry
- Conclusions

Objective

Discussion of the micropore structure analysis of porous {nanoporous, microporous} materials based on adsorption measurements of standard adsorbates N₂ and Ar, and H₂ isotherms

at cryogenic temperatures.

Earlier results Comparison of PSDs calculated from different adsorbates

J. Jagiello, M. Thommes, Carbon Conference, Oviedo (2003) Carbon 42,1227–1232 (2004)

Earlier results H₂ Adsorption on Takeda 3A Carbon Molecular Sieve

Figure 1. Experimental H₂ isotherm measured at 87 K for the Takeda 3A sample compared with the NLDFT isotherms calculated for the 3 and 4 Å pores and with the curve fitted by SAIEUS.

Jagiello, J.; Thommes M.; Linares-Solano, A.; Cazorla-Amorós, D.; Lozano-Castelló, D., Extended Abstracts, Carbon 2004

Experimental

Materials

Set 1:

Carbons derived from poly(ethylene terephthalate), PET Sample PC obtained by pyrolysis of PET.

Samples PC12, PC35, PC58, and PC76 obtained from PC by CO₂ activation with increasing burn-off (12, 35, 58, 76 %)

Details: Parra JB, Ania CO, Arenillas A, Rubiera F, Palacios JM, Pis JJ., J Alloys Compd, 379: 280–89 (2004)

Set 2:

Commercial CMSs from Supelco obtained from polymeric precursors Details: Jagiello, J., Betz, W. Microporous and Mesoporous Materials, **108**, 117–122 (2008)

Sample ACF10, Activated carbon fiber (Kynol)

Details: Jagiello, J., Thommes, M. Carbon 42,1227–1232 (2004)

Commercial Zeolite Samples (Aldrich)

Outline of model calculations

- Model **NLDFT** isotherms (kernels) are calculated using **Tarazona** approach [1, 2].
- Slit pore model for carbon pores.
- Carbon-gas interactions described by the **Steele potential** [3].
- LJ parameters for N_2 and Ar taken from **Ravikovitch** et al. [4].
- Weeks-Chandler-Andersen attractive potential [2].
- H_2 - H_2 interactions: **Silvera-Goldman** [5] potential modeled by LJ potential [6] $e_{\rm ff}/k = 34.3$ K, $s_{\rm ff} = 3.04$ Å
- Gas-solid interaction parameters for H₂-carbon derived from the fit to experimental isotherm measured on graphitized carbon black [7]
- Quantum corrections for H₂ model applied by using **Feynman** "Effective Potential."
- The cylindrical pore model is assumed for zeolite pores.
- 1. Tarazona P, Marini Bettolo Marconi U, Evans R. Mol Phys 1987;60:573.
- 2. Lastoskie C, Gubbins KE, Quirke N. J Phys Chem 1993;97:4786-96.
- 3. Steele WA. The Interactions of Gases with Solid Surfaces Pergamon, Oxford, 1974.
- 4. Ravikovitch PI, Vishnyakov A, Russo R, Neimark AV. Langmuir 2000;16:2311-2320.
- 5. Silvera IF, Goldman VV. J Chem Phys 1978; 69: 4209
- 6. Stan G, Cole MW. J. Low Temp. Phys. 1998; 110:539-544.
- 7. J. Jagiello, A. Anson, M.T. Martinez, J. Phys. Chem., 110 (2006) 4531

Outline of the PSD calculation method

Multi Adsorbate Integral Equation [1]:

$$\min\sum_{m}\sum_{i}^{M}\sum_{i}^{N_{m}} \left[V_{m}(p_{i}) - \int_{\alpha_{m}}^{\beta_{m}} K_{m}(p_{i}, w) f(w) dw \right]^{2}$$
(1)

p_i - experimental pressure of i-th adsorption point

 V_m - measured adsorption isotherm for m-th adsorbate

K_m- set of theoretical DFT isotherms (Kernel) for m-th adsorbate model

f(w) - PSD

w - effective pore width

M - number of adsorbates/models

N_m - number of points of m-th experimental isotherm

f(w) is obtained by conditional minimization of (1) using regularization, SAIEUS [2], nonnegativity constraints [3], L-curve [4].

[1] Jagiello, J.; Thommes M.; Linares-Solano, A.; Cazorla-Amorós, D.; Lozano-Castelló, D., Extended Abstract, Carbon 2004

[2] Jagiello, J. Langmuir 1994, 10, 2778

[3] Lawson, C. L.; Hanson, R. J. Solving Least Squares Problems; Prentice-Hall: Englewood Cliffs, New Jersey, 1974

[4] Hansen, P. C.; O'Leary, D. P. SIAM J. Sci. Comput. 1993, 14, 1487

J. T. Duda, L. Jagiello, J. Jagiello, J. Milewska-Duda, Appl. Surface Sci., 253, 5616–5621 (2007)

micromeritics

micromeritics The Science and Technology of Small Particles

micromeritics The Science and Technology of Small Particles

micromeritics

micromeritics

D micromeritics[®] The Science and Technology of Small Particles[®]

micromeritics The Science and Technology of Small Particles

M micromeritics[®] The Science and Technology of Small Particles[®]

micromeritics The Science and Technology of Small Particles"

M micromeritics The Science and Technology of Small Particles"

micromeritics The Science and Technology of Small Particles"

Im micromeritics The Science and Technology of Small Particles"

D micromeritics The Science and Technology of Small Particles"

micromeritics The Science and Technology of Small Particles

Using Isotherms at Sub and Super Critical Temperatures

The Science and Technology of Small Particles"

Analysis of adsorption isotherms for series of PC carbons

Multi versus single adsorbate fit

J. Jagiello, C. O. Ania, J. B. Parra, L. Jagiello, J. J. Pis, Carbon 45, 1066-1077 (2007)

Calculated PSDs for PC samples

Differential

Cumulative

J. Jagiello, C. O. Ania, J. B. Parra, L. Jagiello, J. J. Pis, Carbon 45, 1066-1077 (2007)

Fitting Ar and H₂ isotherms measured on CMS samples

J. Jagiello, W. Betz, Microporous and Mesoporous Materials **108**, 117–122 (2008)

Calculated PSDs for CMS samples

Differential

Cumulative

J. Jagiello, W. Betz, Microporous and Mesoporous Materials 108, 117–122 (2008)

Effect of using truncated Ar data (Carboxen-1021)

Calculated PSD

J. Jagiello, W. Betz, Microporous and Mesoporous Materials 108, 117–122 (2008)

Prediction of High-Pressure H₂ Adsorption

Standard Adsorption Properties Derived from Ar Isotherms (87 K)

Sample	S(BET) m²/g	V _m (DR) cm³/g
Maxsorb	2100	0.69
Carbosieve	1120	0.42
Norit	970	0.37

J. Jagiello, A. Anson, M.T. Martinez, J. Phys. Chem., 110 (2006) 4531

Micro pore Analysis Using H₂ Adsorption

J. Jagiello, A. Anson, M.T. Martinez, J. Phys. Chem., 110 (2006) 4531

Prediction of H₂ Adsorption at 87 and 298 K from Adsorption Isotherms at 77 K Based on DFT Model

J. Jagiello, A. Anson, M.T. Martinez, J. Phys. Chem., 110 (2006) 4531

Effects of pore size and chemistry in analysis of zeolite pore structure

Cylindrical pore model is assumed for zeolite pores.

Model NLDFT isotherms (kernels) are calculated using Tarazona approach.

Fluid-pore interaction potential has the following form:

 $U_{pore} = E_{wall}(\rho, \varepsilon_{sf}) U_{cylinder}(w, r)$

where:

 $\label{eq:result} \begin{array}{l} \rho \mbox{ - the solid density} \\ \epsilon_{sf} \mbox{ - the adsorbate-solid atom interaction parameter} \\ w \mbox{ - the effective pore width} \\ r \mbox{ - the distance of a molecule from the pore wall} \\ E_{wall} \mbox{ - the wall potential interaction parameter} \\ U_{cvlinder} \mbox{ - the fluid-cylindrical wall interaction potential} \end{array}$

Effects of pore size and chemistry on gas adsorption in zeolites

N₂ Adsorption Isotherm Measured for Zeolite Y Sample

PSDs clculated for Y-N₂ data using

different E_{wall} parameters

Analysis of N₂ and Ar Adsorption Isotherms for Zeolite X and Y Samples

Adsorption Isotherms for Zeolite X

Adsorption Isotherms for Zeolite Y

PSDs Calculated using Optimal E_{wall} parameters

Analysis of N₂ and Ar Adsorption Isotherms for ZSM5 Sample (NH₄ form)

PSD Peak Position as a Function of Wall Potential Parameter, E_{wall}

Ar

 N_2

The Science and Technology of Small Particles[™]

Conclusions

- Carbon PSDs obtained from the simultaneous analysis of multiple adsorption isotherms are robust and consistent with more than one adsorbate.
- This approach allows detecting experimental points that are not fully equilibrated due to very slow diffusion to narrow micropores.
- The range of pore size analysis is extended to smaller pore sizes compared to the standard nitrogen or argon adsorption analysis.
- Data of the two isotherms provide complementary information about the carbon porosity in the range of micro and mesopores.
- Proposed approach can be considered a useful tool for a comprehensive characterization of activated carbons, and for obtaining detailed and reliable carbon PSDs.
- Effective pore wall potential assumed for zeolites allows separating geometrical and chemical effects in the analysis of zeolite pore structure.

PSDs calculated for Y-N2 data using different Ewall parameters.

N2 and Ar Adsorption Isotherms for Zeolite X Sample PSDs calculated for Y and X data using Ewall parameters from Table 1

N₂ and Ar Adsorption Isotherms for Zeolite Y Sample

N2 and Ar Adsorption Isotherms for ZSM5 Sample

PSDs clculated for ZSM5 data using Ewall parameters from Table 1

