Métodos avanzados de caracterización de superficies biomiméticas

Virginia Paredes^{1,2}, Emiliano Salvagni^{1,2}, Enrique Rodriguez-Castellón³, José María Manero¹

 ¹Nanoengineering Research Centre (CRnE). Technical University of Catalonia (UPC), Barcelona, Spain
 ² Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), Barcelona, Spain,

³ Departamento de Química Inorgánica, Universidad de Málaga, España

El Hueso

Entroducción: Implantes

Características

- Composición química
- Energía Superficial
- Concentraciones iónicas
- Contaminación

Procesos

- Cicatrización
- Interface Célula-Material
- Oseointegración

Problemas

- Encapsulamiento
- Hipersensibilidad
- Lesiones en la Piel
- Aflojamiento aséptico
- Liberación de iones

Introducción

╞┶┶┶┶┶┶┶┶┶┶

┝┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶

Objetivo General

•Caracterizar y optimizar el proceso de modificación biomimética de dos superficies metálicas (aleación de CoCr ASTM F1537 y TiNbHf), para mejorar la regeneración de tejido óseo alrededor del implante.

Objetivos

•Caracterizar el proceso de activación, en términos de concentración de grupos OH⁻, grado de limpieza y composición química de la capa de óxidos.

•Evaluar el proceso de silanización y seleccionar el mejor silano en función del porcentaje de Si adherido y su estabilidad.

•Optimizar el proceso de inmovilización de biomoléculas, en términos de porcentaje de péptido adherido y estabilidad del enlace químico.

•Validar el proceso de biofuncionalización efectuado, evaluando la influencia del uso de secuencias peptídicas cortas, sobre la respuesta celular.

Metodología: Técnicas de Caracterización

Biofuncionalización

Metodología: Biofuncionalización

A1. Limpieza y Activación

A2. Silanización

-Mojabilidad -Enlace Si-O-Metal - Estabilidad

A3. Inmovilización de biomolécula

-Mojabilidad -Detección de la cisteína -Concentración de péptido

-AC -XPS -Espectroscopia de UV

B. Respuesta celular

-Adhesión

-Microscopía óptica -Tinción con DAPI -SEM

Sensibilidad superficial del XPS

h·ν Rayos X: Mg Kα 1253.6 eV Al Kα 1486.6 eV 0.5 - 3 nm uperficie 1-10 µm ⇒Análisis de la superficie ⇒Muy sensible a contaminación y segregaciones superficiales ⇒Necesidad de ultra-alto vacío

Sensibilidad Superficial del XPS

Probabilidad del electrón de alcanzar la superficie,

 $\mathbf{P}_{escape} = \exp\left(\frac{-x}{\lambda\cos\theta}\right)$

Intensidad de señal procedente de una rodaja superficial de grasor d $I_{Ad} = K_A \int P dx = K_A \int \exp($ dx $\lambda \cos \theta$ עאר 63% λ 23% 2λ 9% 3λ $P_{escape} = \exp$ 3% 4λ 2% Χ

┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶┶ (a) Cŀ Zn²⁺ (C) NO3-NO₃ Cŀ

Técnica de sustitución del complejo de Zn

 $C_{OH-} = (C_{Zn2+} \times 10^{-6} \times V \times A \times 2) / (M \times S)$

Distribución homogénea entre picos y valles

- Disminución de la contaminación de carbono
- La ratio indica que ambos son eficientes en términos de remoción de C

óxido

metal

- Liberación de iones
- Resistencia a la corrosión

Caracterización Química

	CoCr	PO	AN
Cr2p	4 <u>+</u> 0.0	1<u>+</u>0.0	6 <u>+</u> 0.2
Cr	0.4	0.1	0.6
Cr_2O_3	3.6	0.9	5.4
Co2p	3 <u>+</u> 0.2	16<u>+</u>0.2	3 <u>+</u> 0.0
Со	1.7	0	1.3
Co ₂ O ₃ y	1.3	16	1.7
Co_3O_4			
Cr_xO_v/Co_xO_v	2.77	0.06	3.17
Metal	30	0	21
Óxido	70	100	79

Discusión

•El espesor de la capa de óxido aumenta mayoritariamente con PO.

•El PO óxida más fácilmente el Co.

- •La relación de óxido varía para el caso del PO
- •Con el AN se tiene una capa rica en Cr₂O₃ Mantilinna et al (2004)

The second secon	Proceso de Oxidación	
	Estudios anteriores	1
HHH.	a) $(CoCr)$	Poten
FFF	enriquecida en CoCr. < FrC, > Cocr CoCr CoCr	O ₃ + 2H ⁺ +
ffff	c) Capa de óxido enriquecida en Co Capa de óxido enriquecida en Co Capa de óxido formadas de arriba Capa de óxido formadas de arriba enriquecida en Cr hacia abajo	$Co^{3+} + e \Leftrightarrow$ $Co_2O_3 + 6I$ $Cr_2O_7^{2-} + 6$
J-J-J-J-J-	• Kitakami et al (1990):315ºC, 30 seg	$O_2 + 4H^+ + 2NO_3^- + 10^-$
F	• Fowler et al (1998); oxidación a 25°C	$NO_3^- + 4H$
HHH.	disminuye el contenido de Cr al aplicar de 1200 L de O_2	$HNO_2 + 7HO_2 + 7HO_2 + 2H^+ + O_2 + O_2 + 2H^+ + O_2 + 2H^+ + O_2 $
HARA	La estructura de óxido es consecuencia de la competencia entre la preferencia para Cr	$Co^{2+} + 2e$ $Cr^{3+} + e \Leftrightarrow$ $Cr^{2+} + 2e <$
	de oxidación v/o a la difusividad del Co.	

ciales Redox (PR)

$O_3 + 2H^+ + 2e \Leftrightarrow H_2O + O_2$	2,07 v
Co ³⁺ + e ⇔ Co ²⁺	1,81 v
$Co_2O_3 + 6H^+ + 2e \Leftrightarrow 2Co^{2+} + 3H_2O$	1,75 v
$\operatorname{Cr}_2\operatorname{O_7}^{2-} + 14\operatorname{H}^+ + 6e \Leftrightarrow 2\operatorname{Cr}^{3+} + 7\operatorname{H}_2\operatorname{O}$	1,33 v
O ₂ + 4H ⁺ + 4e ⇔ 2H ₂ O	1,23 v
2NO ₃ ⁻ + 10H ⁺ + 8e ⇔ N ₂ O + 5H ₂ O	1,17 v
NO ₃ [−] + 4H ⁺ + 3e ⇔ NO + 2H ₂ O	0,96 v
$HNO_3 + 2H^+ + 2e \Leftrightarrow HNO_2 + H_2O$	0,93 v
HNO₂ + 7H⁺ + 6e ⇔ NH₄⁺ + 2H₂O	0,86 v
O ₂ + 2H ⁺ + 2e ⇔ H ₂ O ₂	0,68 v
Co ²⁺ + 2e ⇔ Co	–0,28 v
$Cr^{3+} + e \Leftrightarrow Cr^{2+}$	–0,41 v
Cr ²⁺ + 2e ⇔ Cr	–0,74 v

1111111111

2

Plasma de oxígeno

Limpieza

- El PO mostró mayor capacidad para la remoción del C1s.
- Ambos tratamientos son eficientes en términos de limpieza (C2+C3+C4/C1)

Activación

 El AN el que introduce una mayor cantidad de grupos hidroxilos en superficie, posee una mejor relación OH⁻/O² y el mayor valor de C_{OH}/nm²

Capa de óxido

•El AN prácticamente no modifica la naturaleza de la capa de óxidos superficiales y la misma esta conformada mayoritariamente de Cr₂O₃

GPTES C₁₂H₂₆O₅Si

C₉H₂₃NO₃Si

Grupo silicofuncional (EtO=CH₃CH₂OH)

ToF-SIMS – Time of Flight-Secondary Ion Mass Spectroscopy

トナナナナナナナナ

1 Resultados: Silanización

Resultados: Estabilidad Térmica, Quimica y Mecánica de la Silanización

Muestras	C1s	N1s	01s	Si2s	Cl2p
CPTES	42 <u>+</u> 3.2	3 <u>+</u> 0.4	49 <u>+</u> 3.6	3 <u>+</u> 0.4	2 <u>+</u> 0.3
CPTES 24	48 <u>+</u> 1.6	1 <u>+</u> 0.1	48 <u>+</u> 1.5	2_ <u>+</u> 0.1	1 <u>+</u> 0.1
GPTES	41 <u>+</u> 3.8	2 <u>+</u> 0.3	55 <u>+</u> 4.1	2 <u>+</u> 0.3	
GPTES 24	46 <u>+</u> 1.2	2 <u>+</u> 0.1	50 <u>+</u> 2.3	2 <u>+</u> 0.1	
APTES Ma	59 <u>+</u> 3.7	10 <u>+</u> 0.6	24 <u>+</u> 1.5	7 <u>+</u> 0.5	
APTES Ma 24	58 <u>+</u> 3.1	8 <u>+</u> 0.4	27 <u>+</u> 1.4	7 <u>+</u> 0.4	

Resumen de la Etapa de Silanización

CPTES

GPTES

APTES+Ma

CoCr

Caracterización Física

• La silanización origina una modificación en la mojabilidad superficial de manera homogénea sobre todas las superficies.

Caracterización Química

- Para la ratio O2/Si, el APTES+Ma arrojó los mejores resultados.
- La ratio N2/Si fue <2, a causa de un proceso de polimerización.
- La efectividad de la silanización se ve afectada por la concentración de silano y al trabajar en un ambiente 100% anhídrido.

Estabilidad de los Silanos

- La modificación de la mojabilidad superficial efectuada por la silanización, se mantiene.
- Los tres silanos se han enlazado en las superficie, en función de la estabilidad de los enlaces de O-Si-O, Si-O-metal. No obstante el menos estable fue CPTES

Inmovilización de Biomoléculas: Péptidos

H₂Ń

NH2

 H_2N^2

HN=

HN

NH

⊳́мн

Estrategia l'Inmovilización de Biomoléculas: Estrategia

Resultados: Inmovilización de Biomoléculas

Caracterización Química

T					L a	lacteriza	
T	Picos	GPTES	G+R	G+F	G+P	G+RF	G+RP
-	C1s	33 <u>+</u> 1.7	38 <u>+</u> 1.1	42 <u>+</u> 2.7	33 <u>+</u> 1.0	39 <u>+</u> 1.9	47 <u>+</u> 3.1
	N1s	2 <u>+</u> 0.2	3 <u>+</u> 0.4	8 <u>+</u> 0.7	3 <u>+</u> 0.1	7 <u>+</u> 0.6	5 <u>+</u> 0.3
-	O1s	44 <u>+</u> 0.9	43 <u>+</u> 1.8	37 <u>+</u> 1.4	46 <u>+</u> 2.7	39 <u>+</u> 1.5	37 <u>+</u> 2.1
P	Si2s	2 <u>+</u> 0.1	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0
	S2p	0 <u>+</u> 0.0	1 <u>+</u> 0.1	1 <u>+</u> 0.1	1 <u>+</u> 0.3	1 <u>+</u> 0.2	3 <u>+</u> 0.4
P	Cr2p	14 <u>+</u> 0.6	0 <u>+</u> 0.0	1 <u>+</u> 0.1	0 <u>+</u> 0.0	1 <u>+</u> 0.0	0 <u>+</u> 0.0
	Co2p	4 <u>+</u> 0.0	11 <u>+</u> 0.2	8 <u>+</u> 0.7	13<u>+</u>0.7	10 <u>+</u> 0.9	6 <u>+</u> 0.4
Þ	Mo3d	1 <u>+</u> 0.0	4 <u>+</u> 0.2	3 <u>+</u> 0.1	4 <u>+</u> 0.3	3 <u>+</u> 0.1	2 <u>+</u> 0.1
	Picos	AP+Ma	AM+R	AM+F	AM+P	AM+RF	AM+RP
P	C1s	59 <u>+</u> 3.1	50 <u>+</u> 2.3	48 <u>+</u> 1.7	46 <u>+</u> 2.1	47 <u>+</u> 3.6	45 <u>+</u> 1.9
	N1s	9 <u>+</u> 0.7	6 <u>+</u> 0.4	6 <u>+</u> 0.2	6 <u>+</u> 0.5	6 <u>+</u> 0.4	6 <u>+</u> 0.4
P	01s	25 <u>+</u> 1.7	32 <u>+</u> 2.1	35 <u>+</u> 1.3	36 <u>+</u> 2.3	37 <u>+</u> 2.7	37 <u>+</u> 2.2
	Si2s	7 <u>+</u> 0.5	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0
P	S2p	0<u>+</u>0.0	5<u>+</u>0.2	5<u>+</u>0.3	5<u>+</u>0.5	4<u>+</u>0.3	5<u>+</u>0.4
	Cr2p	0 <u>+</u> 0.0	1 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0
P	Co2p	0 <u>+</u> 0.0	4 <u>+</u> 0.2	4 <u>+</u> 0.1	5 <u>+</u> 0.3	5 <u>+</u> 0.3	5 <u>+</u> 0.4
	Mo3d	0 <u>+</u> 0.0	2 <u>+</u> 0.1	2 <u>+</u> 0.2	2 <u>+</u> 0.1	1 <u>+</u> 0.2	2 <u>+</u> 0.2
-		Matinlin		(0004)			

	Picos	AP+Ma	AM+R	AM+F	AM+P	AM+RF	AM+RP
2	C1s	59 <u>+</u> 3.1	50 <u>+</u> 2.3	48 <u>+</u> 1.7	46 <u>+</u> 2.1	47 <u>+</u> 3.6	45 <u>+</u> 1.9
	N1s	9 <u>+</u> 0.7	6 <u>+</u> 0.4	6 <u>+</u> 0.2	6 <u>+</u> 0.5	6 <u>+</u> 0.4	6 <u>+</u> 0.4
	01s	25 <u>+</u> 1.7	32 <u>+</u> 2.1	35 <u>+</u> 1.3	36 <u>+</u> 2.3	37 <u>+</u> 2.7	37 <u>+</u> 2.2
5	Si2s	7 <u>+</u> 0.5	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0
	S2p	0<u>+</u>0.0	5<u>+</u>0.2	5<u>+</u>0.3	5<u>+</u>0.5	4 <u>+</u> 0.3	5<u>+</u>0.4
2	Cr2p	0 <u>+</u> 0.0	1 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0	0 <u>+</u> 0.0
	Co2p	0 <u>+</u> 0.0	4 <u>+</u> 0.2	4 <u>+</u> 0.1	5 <u>+</u> 0.3	5 <u>+</u> 0.3	5 <u>+</u> 0.4
5	Mo3d	0 <u>+</u> 0.0	2 <u>+</u> 0.1	2 <u>+</u> 0.2	2 <u>+</u> 0.1	1 <u>+</u> 0.2	2 <u>+</u> 0.2

Matinlinna et al (2004); el Cr₂O₃ es el principal responsable del enlace Cr-O-Si

Resultados: Inmovilización de Biomoléculas con GPTES

Caracterización Química

	Picos		GPTES	G+R	G+F	G+P	G+RF	G+RP	
C1s			33<u>+</u>1.7	38<u>+</u>1.1	42 <u>+</u> 2.7	33<u>+</u>1.0	39<u>+</u>1. 9	47<u>+</u>3.1	
	C1	C=C, C-H	20.3	25.5	22.7	20.1	21.4	27.7	
	C2	C=O, C-OH,	7.0	7.2	10.5	6,9	9.0	10.3	
	C3	CH ₂ O, C-S	2.4	2.3	3.8	2.0	3.5	3.4	
		Dipéptido							
	C4	COOH, C-N, C=O	3.3	3.0	5.0	4.0	5.1	5.6	
		Guanidina	1						
N1s			2<u>+</u>0.2	3<u>+</u>0.4	8<u>+</u>0.7	3<u>+</u>0.1	7<u>+</u>0.6	5<u>+</u>0.3	
	N1	C=NH, C-N	0.9	0.8	0.5	1.0	0.6	1.5	
	N2	Guanidina Amida	1.1	2.2	7.5	2.0	6.4	3.5	
01s			44<u>+</u>0.9	43<u>+</u>1.8	37<u>+</u>1.4	46<u>+</u>2.7	39<u>+</u>1.5	37<u>+</u>2.1	
	01	O ²⁻ , CoO, MoO ₃ ,	20.0	16.3	14.4	20.2	15.4	14.0	
		$CrO_{3}, Cr_{2}O_{3}$							
	02	OH, COOH	15.0	17.6	16.9	10 /	16.9	15.0	
		Dipéptido	10.9	17.0	10.0	10.4	10.0	10.2	
	03	C=O, ,-C-O	8.1	0.1	5.8	7.4	6.8	7.8	
	03	SO ₄	0.1	9.1	5.0	/.4	0.0	7.0	

C4 y 02 Enlace Péptidico

C4 y N2 Grupo Guanidina $_{HN-C-NH_2}^{NH}$

C4 y O2 Grupo Carboxilicos

C1s	C1 C2	C=C, C-H	59 <u>+</u> 3.1	50<u>+</u>2.3	48<u>+</u>1.7	46 +2.1	47 +3.6	45 +1 9
	C1 C2	C=C, C-H	30 1			_	<u>-</u> 0.0	
	C2		50.4	310	28.8	25.8	27.3	25.2
	-	C=O, C-OH,	19.5	13.0	13.0	13.8	14.1	14.4
	С3 -	CH ₂ O, C-S Grupo Imida	4.9	4.0	4.3	4.1	3.8	3.6
	C4	Dipéptido COOH, C-N, C=O	4.2	2.0	1.9	2.3	1.8	1.8
	-	Guanidina						
N1s			9<u>+</u>0.7	6<u>+</u>0.4	6<u>+</u>0.2	6<u>+</u>0.5	6<u>+</u>0.4	6<u>+</u>0.4
	N1	C=NH, C-N	0.0	0.2	0.2	0.2	0.2	0.2
	N2	N-H Guanidina Amida	9.0	5.8	5.8	5.8	5.8	5.8
01s			25<u>+</u>1.7	32 <u>+</u> 2.1	35 <u>+</u> 1.3	36 <u>+</u> 2.3	37 <u>+</u> 2.7	37 <u>+</u> 2.
	01	O^{2-} , CoO, MoO ₃ , CrO ₂ Cr ₂ O ₂	1.5	7.7	6.5	9.0	10.0	10.0
	O2	OH, COOH Grupo Imida Dipéptido	7.0	9.6	10.9	10.0	11.8	10.0
	O3	C=O, -C-O SO ₄	16.5	13.7	18.6	16.0	15.2	17.0

Resultados: Concentración de Péptido Adherido

Espectofotometría UV-Visiblle

Adhesión de Péptido sobre CoCr

Resumen de la Inmovilización de Biomoléculas

Secuencias Peptídicas

- Fue adecuada la selección de la Cys , para la identificación de las secuencias peptídicas.
- Las secuencias peptídicas se encuentran sobre las superficies de CoAM y de CoG.
- En términos de densidad de péptido los mejores resultados se obtuvieron con APTES+Ma.

CViabilidads de Ensayo

1777777777777777

	_	CViabilidads de Ensayo
		Intensidad de Fluorescencia (Calcein-AM) 2309.27 • Tipo Celular: Mesenquimales de • Tiempo de Adhesión: 6 Horas • Estudios: • Logina - 109.3 • Logina
Vlabilidad		
CONTROL	CPTES	GPTES APTES CL
FISISORBIDO RGD	CPTES + RGD	GPTES + RGD APTES CL + RGD

Respuesta Celular In Vitro

Resumen de la Respuesta Celular In Vitro

Viabilidad y Adhesión

- Las superficies biofuncionalizadas pueden ser consideradas no citotoxicas o biocompatibles.
- Las muestras que contienen RGD, solo o en mezclas, son las que presentan mejores resultados (densidad de células, morfología y área).
- La concentración de biomolécula adsorbida sobre la superficie es una variable dependiente del proceso de adhesión celular; a mayor cantidad de péptido, mejor respuesta celular.
- Se proponen como trabajos futuros, estudios de proliferación y diferenciación celular.

Limpieza y Activación

 El tratamiento con ácido nítrico ha resultado ser más eficiente que el PO en términos de cantidad de grupos OH⁻ y de la ratio OH⁻/O²⁻

Silanización

- Los silanos se enlazaron mayoritariamente el Cr₂O_{3.}
- El APTES+Ma, presentó los mejores resultados en términos de la estabilidad química, térmica y mecánica.

Inmovilización de Biomoléculas

• El APTES+Ma como posee mayor densidad de silano, consigue una mayor adhesión de secuencias peptídicas.

Respuesta Celular

 Las muestras de APTES+Ma que contienen RGD, solo o en mezclas, son las que presentan mejores resultados, deduciendo que a mayor cantidad de péptido, mejor respuesta celular.

Conclusiones Generales: Aleación de TiHfNb

Limpieza y Activación

 El tratamiento con PO ha resultado ser mas eficiente que el PI en términos de cantidad de grupos OH⁻ y de la ratio OH⁻/O²⁻.

Silanización

 El APTES+Ma, presentó los mejores resultados en términos de la estabilidad química, térmica y mecánica.

Inmovilización de Biomoléculas

• El APTES+Ma al contener mayor densidad de silano, consigue una mayor adhesión de secuencias peptídicas.

Respuesta Celular

 Las muestras con APTES+Ma que contienen RGD, solo o en mezclas, son las que presentan mejores resultados, corroborando que a mayor cantidad de péptido, mejor respuesta celular

Conclusiones Generales

Limpieza y Activación

 La selección del mejor tratamiento ha de hacerse en términos de cantidad de grupos OH⁻ y de la ratio OH⁻/O²⁻ y dependerá de la composición química de la superficie.

Silanización

 La detección del Si, y el estudio de la estabilidad química, térmica y mecánica, son parámetros óptimos para la selección del mejor organosilano.

Inmovilización de Biomoléculas

• A mayor densidad de silano enlazado se consigue una mayor adhesión de secuencias peptidicas.

Respuesta Celular

 A mayor cantidad de péptido, mejor respuesta de adhesión celular

Departamento de Química Inorgánica Facultad de Ciencias Universidad de Málaga castellon@uma.es

Muchas gracias